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On the compressibility of a one-component plasma 

M Bausf 
Chimie-Physique 11. Universite Libre de Bruxelles, CP 23 1, B-1050 Bruxelles, Belgium 

Received 6 February 1978 

Abstract. We consider a fluid of charged particles embedded in a neutralising background 
and, in contradistinction with ordinary fluids, define its isothermal compressibility from the 
k4-term of the small-wavevector expansion ( k  -+ 0) of the static structure factor S ( k ) .  We 
then show that this compressibility can nevertheless also be written as a thermodynamic 
derivative but that contrary to what happens for ordinary fluids i t  is not a positive 
semidefinite quantity, in agreement with the recent numerical results obtained for charged 
fluids. 

1. Introduction 

Recently the study of ionic fluids has attracted a lot of interest. The presence in these 
systems of long-ranged Coulomb forces makes it necessary to reconsider some of the 
well known results for ordinary fluids. An impression of the present state of knowledge 
can be obtained from two recent and complementary reviews (March and Tosi 1976, 
Baus 1978). 

In this work we will be concerned only with the simplest such ionic fluid generally 
known as the one-component plasma (OCP). The OCP is composed of one species of 
mobile point charges embedded in an inert neutralising background. The interaction 
potential between the mobile charges is assumed to be purely Coulombic although the 
presence of non-Coulombic short-ranged forces will not alter the characteristic features 
of the OCP. Here this system will be described classically and only its static properties 
will be considered. 

The main purpose of this work then will be to proof the equivalance between two 
independent definitions of the isothermal compressibility of the OCP, one obtained from 
the static structure factor S ( k )  and one obtained from the equation of state of the OCP. 
This well known problem for ordinary fluids has to be reconsidered for the case of the 
OCP mainly because S ( k )  vanishes with k as a result of the long-ranged Coulomb 
interactions. In the literature this equivalence was assumed a priori and was shown to 
lead moreover to negative values of the compressibility in the case of a strongly-coupled 
OCP. Such negative values have been obtained both from approximate theories of the 
equation of state (Totsuji and Ichimaru 1974) and from computer simulations (Vieille- 
fosse and Hansen 1975). We will show that these negative values do not result from 
some improper identification of the compressibility but instead reflect the particular 
properties of the OCP. We will however say nothing about the question, which is still the 
object of a strong debate, of what precisely happens to the OCP at the point where its 
compressibility first becomes negative. 
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In 8 2 we outline the proof for ordinary fluids following hereby very closely the work 
of Schofield (1966). This allows us to introduce the basic definitions and to fix the 
notation. In 9 3 we review the various definitions of the compressibility of the OCP. The 
equivalence proof for the OCP is given in 8 4 while the corresponding equation of state is 
calculated in 9 5 .  Our conclusions are summarised in the final section. 

2. Compressibility of ordinary fluids 

2.1. Basic definitions 

All information of interest for the study of the static properties of fluid systems can be 
most conveniently derived from the static structure factor, S ( k ) ,  of the number density 
fluctuations, n k ( t ) = X E l  expik.xi(t)  of the N particles located at time r at the 
positions {x,(l)}. More precisely we have:: 

S ( k )  = ( l / n  )(n-k(o>nk (0))  (1) 

where (. . .) denotes a canonical equilibrium average, divided by the volume R and 
followed by the thermodynamic limit$ ( N  + a, R + 00) at fixed density n = N/O. It is 
also very convenient to introduce as an auxiliary function the Ornstein-Zernike direct 
correlation function c ( k )  related to S ( k )  by the well known relation: 

S ( k ) =  (1 -C(k ) )?  (2 1 
Notice that our definitions of S ( k )  and c ( k )  are standard except that we have made them 
dimensionless by absorbing an appropriate density factor into the definition of c ( k )  and 
S ( k ) .  We now define the isothermal compressibility xT through the relation: 

where the ideal gas compressibility, x $ = B / n ,  also makes the RHS of equation (3) 
dimensionless (p = ( k ~ T ) - l  is the inverse equilibrium temperature in energy units). 
Equation (3) is usually referred to as the compressibility sum rule because of the fact 
that S ( k )  is also the zeroth-order frequency sum rule of the dynamic structure factor 

S ( k ,  U )  i.e. S ( k )  = ! dw S ( k ,  w ) .  

Using equation (2) we can translate equation (3) into the equivalent definition: 

k Iim = O  c ( k )  = 1 - h; / xT) .  (4) 

We now would also like to give XT its thermodynamic meaning as a thermodynamic 
derivative: 

t Notice that with the present definition we have S ( k ) =  n 8 * 3 S ( ~ ) + ( l / n ) ( 6 n - k S n k )  where ank = 
n k ( O ) - h % F .  For k f O  this difference with the usual definition of S ( k )  is immaterial and in the present 
context equation (1) is the most convenient. 
$ For the OCP this limit does not exist for the grand-canonical ensemble. Here we have thus to  depart slightly 
from the original work of Schofield (1966). 
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where p is the thermodynamic pressure entering the equation of state p = p(n, T ) .  In 
order to establish the equivalence between the two definitions of say equation (4) and 
equation ( 5 )  and identify hereby the microscopic expression of the thermodynamic 
pressure p ,  we use the microscopic theory of thermodynamic fluctuations in the original 
setting of Schofield (1968). 

2.2. Microscopic theory of thermodynamic fluctuations 

To any microscopic density a(r ,  t )  we associate its Fourier transform: 

a k ( t ) =  d r a ( r ,  t ) exp ik . r  (6) 1 
and from the set of microscopic variables {ak(t)} we select an orthogonal set of r 
conserved variables {xi(t); j = 1, . . . , r}. The fact that the xi(t)variables are conserved 
implies that there are r microscopic conservation laws of the form x’,(t) = ik .  yi(r), 
where x’,(t) is the time derivative of x;(t) a n d 9 i ( t )  the current conjugated to x;(t). If 
we define moreover the component of a variable @(t) along the variable bk(t), i.e. the 
projection of ak(t) onto bk(t), by 

( b - k ( t ) a k ( r ) ) / ( b ~ k ( t ) b k ( t ) )  

then the set of conserved variables will be orthogonal i f  (x‘k(t)x:(t)) vanishes for all 
i # j .  With the aid of these definitions we can decompose each ak(t) into a conserved 
part, a;(t), and a nonconserved part, a i ( t ) ,  by projecting ak(t) onto the various 
conserved variables according to: 

ak(t) = a ;(t)+ a i ( t )  (7a 1 

where in equation (7b) ,  r now denotes the total number of conserved variables, i.e. r = 5 
for the one-component systems considered here. Let now a and {x’} denote the 
macroscopic variables corresponding respectively to &( t )  and {x:(t)}. We have, for 
instance, 

a = (lim ak(t)) 
k = O  

where the k + O  limit has to be taken before the ensemble average implied by (. . .) 
because of the translational invariance of the equilibrium ensemble. Now if the 
macroscopic variable, a, is only a function of the conserved variables {x’}, i.e. if  we 
expect that a = a ({x’}), then a small change Axf in the various x’ values will produce ,a 
change Pa in the a variable given by: 

where it is understood that the derivative (aa lax ’ )  is taken keeping all X I  with i # j  
constant. In order to reproduce equation (8) from equation (7) we proceed as follows. 
We first take the macroscopic limit (k + 0) and then take the average of equation (7) 
with the difference of two equilibrium distributions differing only slightly from each 
other in the macroscopic parameters x‘. Equation (8) will then follow from equation (7) 
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provided we make the following identifications: 

aa ( x ! - k a k )  - = lim - 
ax’ k - 0  ( X L k X i )  

a = (lim a k )  x’  = (lim x i )  (9b) 
k = O  k’=O 

Because of the stationary character of the equilibrium ensemble and the fact that only 
equal-time correlations will be considered here we have dropped the time variable in 
equation (9) and will do this henceforth. The underlying assumption used in obtaining 
equation (9)is that the nonconserved part, a;, of a k  does not contribute to the change in 
the macroscopic variable a produced by the changes in the conserved variables. To a 
lesser extent we have also assumed that the limits of the products appearing in the RHS 

of equation (76) are given by the products of the limits involved?. 

2.3. The microscopic pressure fluctuations 

Let us write the microscopic conservations for the number density and total momentum 
density as: 

n k  = ik . j k  

J k  = ik . a k  

(loa> 

(106) 

where j k  and o k  are the variables corresponding to the current density and stress tensor. 
The explicit microscopic expression of j k  and a k  will not be needed here but they can be 
found, for instance, in Schofield (1966). We now define the microscopic fluctuation of 
the mechanical pressure, p k ,  by: 

p k  = m t .  a k .  (11) 

where = k / / k /  is the unit vector along k and m the mass of the particles. Notice that in 
the present equilibrium context it is justified to call any variable a k  a fluctuation because 
its equilibrium average ( a k )  vanishes for k # 0 although (limk=o a k )  will in general be 
different from zero. 

Before closing this section let us recall an important sum rule involving P k .  As 
already observed above, the stationary property of the equilibrium distribution implies 
that all equal-time correlation functions ( a - k ( t ) b k ( t ) )  are in fact time-independent, i.e. 

obtain sum rules. Indeed, taking the time derivative at t = 0 of ( a - k ( t ) b k ( t ) )  we obtain 
because of the stationarity property that ( u - k b k ) +  ( a - k d k )  = 0 and specialising to the 
particular case a k  = nk and b k  = r ik  we obtain the well known second-order frequency 
sum rule of the dynamic structure factor, j dw w 2 p ( k ,  U ) =  - - ( n - k i i k )  in the form: 

( a - k ( t ) b k ( t ) )  = ( a - k ( O ) b k ( o ) ) .  AS noted by Schofield (1966) this property can be used to 

( ~ - k h k ) +  ( n - k i i k )  = 0.  (12) 
From equation (10) we have moreover: 

( n - k i i k ) = - ( n - k k .  u k .  k) (13) 

while by virtue of the fact that in a classical system the velocity and position averages 

t This is to say, we assume that all these limits do in fact exist. 
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factorise we also have the simple result: 

(14) 2 2  
( i - k h k )  = nk U 0  

where uo = (mp)-1'2 is the thermal velocity. Substituting the result of equations (13) 
and (14)into equation (12) and using the definition of equation (1 1) we rewrite the sum 
rule, equation (12), as: 

P o  = (n-kpk) (15) 
where p o  = n/P is the ideal gas pressure. 

2.4. The equation of state 

We now return to the original problem and combine equations (1)and (2) with equation 
(15) to obtain: 

so that equation (4) becomes now: 

and hence the inverse compressibility is also the k + O  limit of the projection of the 
pressure fluctuation p k  onto the density fluctuation nk. According to equation (9) the 
RHS of equation (17) can finally also be written as a thermodynamic derivative which 
becomes identical with equation ( 5 ) ,  i.e. the desired result, provided we identify the 
thermodynamic presure p as: 

where p k  was defined by equation (1 1) (notice also the trivial result n = (limk=o nk)). 
Hence the isothermal compressibility defined by equation (4) is consistent with the 
thermodynamic definition of equation ( 5 )  provided the derivative ap/dn I T  is computed 
from the equation of state given by equation (18). Notice finally that because of 
rotational invariance we also have: 

so that equation (18) is in fact the virial equation of state. This then constitutes the 
proof of the equivalence of the two definitions of the compressibility for ordinary simple 
fluids. As shown by Schofield (1966) the expressions introduced above can also be 
rewritten in terms of the reduced equilibrium distribution functions. For later reference 
we quote here the result obtained for equation (18): 

where p o  = n/P,  u(r )  is the interaction potential and g ( r )  the equilibrium pair dis- 
tribution related to S ( k )  by 

S ( k )  = n87r3S(k)+ 1 + n dr(g(r)- 1) exp ik . r. (21) 



2456 M Baus 

We close this section by observing that from equation (15) and the fact that (n-knk) = 
(lnkl’) it follows from equation ( 1 7 )  that ,yT is a positive semidefinite quantity. 

3. Compressibility of the OCP 

Whereas the previous section merely served as an introduction we now come to our  
main topic. For the OCP equations ( 1 )  and ( 2 )  are still valid but already for equation ( 3 )  
things change because for the OCP, S ( k )  vanishes with k .  The basic observation here is 
that in the OCP the charge- and number-density fluctuations are proportional to each 
other so that S ( k )  also describes the charge-density fluctuations bringing naturally the 
long-ranged Coulomb forces into play. This is most easily seen by recalling that the 
direct correlation function c ( k )  which is still defined by equation ( 2 ) ,  is expected to have 
the following small k behaviour: 

c ( k ) =  - n p v ,  for k + 0 ( 2 2 )  

where Vk is the Fourier transform of the potential. Indeed, for large interparticle 
separations (or small k )  one expects c ( k )  to take on its weak-coupling value because 
distant particles can only be weakly coupled. Now the weak-coupling value of c ( k )  is 
precisely -npVk and hence we have equation (22 ) .  If, however, at least part of the 
potential is Coulombic?, say 

v k = v : + v ; ’  with V‘, = 4.rre2/k2 

e being the charge of the mobile particles, then c ( k )  is seen from equation ( 2 2 )  to 
diverge as - k k / k 2 ,  for small k,  whereas from equation ( 2 )  S ( k )  is seen to vanish as 
k * / k h  for small k (here k k  =47re2n/3 is the square of the Debye wavevector). As we 
have argued elsewhere (Baus 1975)  one can expect however that once we have 
extracted this singular contribution 

c S ( k ) =  - k k / k 2  from c ( k ) =  c s ( k ) + c R ( k )  

the remainder, cR(k),  will be a regular function of k for small k,  i.e.: 

c ( k )  = - 7 k k  + c R(0) + O(k’)  
k 

or equivalently, using equation (2 ) :  

S ( k ) =  ( k ’ / k h ) +  ( k 4 / k h ) ( C R ( 0 ) -  1 ) +  O(k6) .  ( 2 4 )  
These results, equations ( 2 3 )  and (24) ,  differ profoundly from equations ( 3 )  and (4) and 
reflect the manner in which the Coulomb forces affect the macroscopic behaviour 
( k  + 0). Using equation ( 2 1 )  the content of equation ( 2 4 )  can also be translated into 
real-space position sum rules for g ( r ) :  

n J d r  ( g ( r ) -  I ) =  - 1  

t As we will not be aiming at full generality it might be useful to point out here that most of the results derived 
below remain valid when a short ranged potential is added to the Coulomb potential. 
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in which case equations (25a, 6 )  are usually referred to as the two Stillinger-Lovett 
moment conditions. Still another and perhaps more physical way of stating the same 
basic property expressed in equation (23)  can be obtained by formulating it in terms of 
the static dielectric constant ~ ( k )  defined by: 

S ( k  = ( k  2 / k L  )[I - ( 1 / ~ ( k  111. (26) 

The condition formulated in equation (23)  can now be re-expressed by requiring that 
the system exhibits perfect screening in the limit of small k ,  i.e. that ~ ( k )  behaves like 
E ( k ) =  1 + k i / k 2  for small k implying that the effective potential Viff = V i / ~ ( k )  
exhibits perfect screening, Viff = 47re2/(k2+ k i )  for small k ,  with k s  as inverse screen- 
ing length. This perfect screening condition is equivalent to the above condition 
provided the screening wavevector ks is related to cR(0) of equation (23)  through the 
relation: 

( k L / k 2 ) =  1 - C R ( 0 )  (27) 

Finally, a straightforward application of macroscopic thermodynamic theory has led 
Vieillefosse and Hansen (1975) to the expression: 

for k + O  k ;  -’ 
Xr 

S ( k ) =  

where x$ = P/n ,  while xT was defined by them as the isothermal compressibility of the 
OCP. For this definition of XT to be consistent with the above equation (23)  we need to 
satisfy: 

k lim = O  [ c ( k ) + ( k L / k 2 ) ] = c R ( 0 ) =  1 - ( , ~ ? / X T )  (29)  

where we have used equation ( 2 ) .  This condition nicely fits the standard definition, 
equation (4) ,  once the singular part C s ( k )  = - k h / k 2  has been extracted from C ( k ) .  The 
main question now is whether the compressibility of the OCP defined by one of the above 
equivalent relations, for instance equation (29),  also deserves its name, i.e. whether it  
can also be written as a thermodynamic derivative, for instance equation ( 5 ) ,  and if  yes 
with what definition of the thermodynamic pressure. That this question is not solely a 
matter of principle can be seen from the fact that if is identified as n(dp/dn)lT (see 
equation (5)) and the pressure derivative computed from the  following equation of 
statet: 

(30)  

for a pure Coulomb potential V ( r )  = e2/2,  then the numerical results of both approxi- 
mate theories (Totsuji and Ichimaru 1974) and of molecular dynamics studies (Vieille- 
fosse and Hansen 1975) indicate that (ap/dn)lr takes on negative values when the 
system’s coupling constant r = e ’ P [ 4 ( ~ / 3 ) n ] ’ ’ ~  exceeds a critical value Tc- 3. Such an 
unusual behaviour for a compressibility immediately raises the question whether the 

t It is of interest to observe that this equation can also be obtained from the volume derivative of the free 
energy by the usual scaling procedure provided the background is explicitly taken into account before the 
thermodynamic limit is taken. 
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system exhibits a phase transition at r = r, or whether the compressibility has been 
improperly identified. Leaving aside the question of the phase transition (which has as 
yet not been observed)t we will show in the next section that the OCP compressibility 
defined by equation (29) can indeed be identified with equation ( 5 )  if equation (30) is 
used to define the pressure. 

4. The OCP compressibility as a thermodynamic derivative 

We will now proceed just as in § 2 but starting this time from the definition given in 
equation (29) which we write as: 

k ;  0 

XT k = O  lim ( 1  - c ( k ) - T )  k 

or equivalently using equations (1.2) and equations (15) and (16): 

Notice the difference between equation (32) and equation (17). At this point it is 
already clear that the OCP compressibility is not a positive semidefinite quantity3 
because the RHS of equations (32) is the difference of two positive and singular 
quantities (recall from equation (15) that ( n - k p k )  is always positive). Moreover the 
existence of the limit in the RHS of equation (32) is consistent with our previous relations 
since equation (15) and equations (1,24) imply that both terms of the difference in the 
RHS of equation (32) exhibit the same small k singularity. We now proceed by 
extracting this singular behaviour. To do so we compute the pressure fluctuation p k  
from equations (10) and (11) for the case of pure coulomb interactions (Vk = 47re2/k2) .  
Starting from 

N 

/ = 1  
n k  = 1 exp ik.  xi 

one obtains 
N 

r ik  = ik.  u, exp ik.  x, = ik.  j k  where U, = i, 
j =  1 

and moreover 
N 

r i k  = 1 {(ik . ui)’ + ik . u i }  exp ik . x, = -k . u k  . k = - ( k 2 / m ) p k  
j =  1 

where the definitions of equations (10) and (1 1) have been used. As usual, we can split 
p k  =pF +pE into a kinetic part: 

N 
p F = m  ( i .u , )2expik.xi  

, = I  
(33) 

? Notice that because of the small k Coulomb-divergence displayed for instance in equation (28), the 
divergence of x r  at r=r ,  does not lead to a divergence in S ( k ) .  In this sense the OCP remains 
thermodynamically stable at r = r,. This however may not be a sufficient condition to preclude the presence 
of more refined types of phase transitions. 
:I: The same conclusion can also be obtained from the rigorous results of Lieb and Narnhofer (1975) indicating 
that the canonical free energy of the OCP lacks the appropriate convexity property. 
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and a potential part: 

N k  
/ = I  k 

p :  = 2 -iT.F expik.x,  (34) 

where F, = mu, is the force acting on particle j which for pure Coulomb interactions can 
be represented by the following Fourier series: 

In equation (35) the dash on the particle summation indicates that the self-interactions 
have to be excluded ( i  # j )  while the dash on the 1 sum refers to the restriction 1 # 0 
which takes into account the contribution of the neutralising background to the spatially 
homogeneous part of the electric potential. We now substitute equation (35) into 
equation (34) and further split p :  as p :  = p ;  + p i  by separating out the contribution to 
equation (34) from the 1 = k term in the RHS of equation (35). The first term p i  
represents then a one-body contribution originating from the microscopic electric 
potential fluctuation f$k related to nk by Poisson’s equation, C$k = (47re/k2)nk: 

N 4 r e 2  47re’n 
p ; = n  1 T - e x p i k . x , = -  nk 3 en4k 

/ = I  k k’ 

while the remaining term p i  represents an intrinsically two-body contribution: 

p i  = ( 4 7 r e 2 / Q ) x “ x ‘ ( k .  l/k’1*)exp[i(k-l).x1 + i l . x , ]  (37) 
I 1.1 

where the double dash on the 1 sum indicates that now both the values 1 = 0 and 1 = k 
are to be excluded from the sum. Substituting now P k  = p E  + p i  + p i  as obtained from 
equations (33, 36, 37) back into equation (32) we see that the contribution of the 
microscopic electric potential fluctuation C$k to the mechanical pressure fluctuation pk, 
namely p i  defined in equation (3.6), exactly compensates the singular second term in 
the RHS of equation (32) leaving us with: 

where the remainder p :  = p ;  + p ;  will be called, for reasons which will soon become 
clear, the thermal part of pk, With the aid of equation (9) we now obtain from equation 
(38): 

(39) 
_-  x? d P  

p = (lim k = O  p i )  

- P r  
Xr d n l r  

with however a thermodynamic pressure p defined by: 

( 4 0 )  

instead of the usual result of equation (18). Hence we have shown that the  OCP 
compressibility X T  defined by one of the equivalent definitions given in S: 3, for instance 
equation (29) ,  can also be expressed as a thermodynamic derivative provided equation 
( 4 0 )  is adopted as the definition of the thermodynamic pressure p .  We reach therefore 
the conclusion that in the case of the OCP the thermodynamic pressure p is not related to 
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the fluctuation of the full mechanical stress tensor g k  through equation (11) but only to 
its thermal part ( p i  = p F  + p i )  on the exclusion of its electric part (p;). Notice the 
similarity between our microscopic result and the macroscopic treatment of Vieillefosse 
and Hansen (1975) who have added, a posteriori, the contribution of the macroscopic 
electric field to the macroscopic stress tensor. 

5. The equation of state of the OCP 

We now compute the RHS of equation (40) explicitly with the aid of equations (33), (37). 
After some simple algebra we obtain: 

(47re2/0)C” 1’ (k. l/k212)(1 + i k .  x, +O(k’)) exp il. (x i  -xi) 
I I., 

and will now analyse separately each of the three contributions to the second term in the 
RHS of equation (41). The first contribution will, because of the rotational invariance of 
the equilibrium distribution, lead in the thermodynamic limit to an odd I integral and 
hence vanish. The third contribution is 6 ( k )  so that we are left over with only the 
second contribution which we symmetrise and rewrite as: 

(. . . ik . xi exp il . (xi - x, )) = 3. . . ik . (xi - x,) exp il . (xi - x,)) 

(42) 
1 

= d. . . - k . ( d / d l )  exp il.  (xx i  -xi)). 

We can write moreover: 

(. . . (k. l/k212)[-k. ( a / d l ) ]  exp il. (xl  -x,)) 

= (. . . {-k. ( d / a l ) [ ( k .  l/k212) exp il. (xl  -x,)] 

+(1/1~)(1-2(&.  0’)expil .  ( x l - x j ) } )  (43) 

where the first term in the RHS of equation (43) leads to a surface term which will vanish 
in the thermodynamic limit leaving us finally with the result ( v k  = 4i7e2/k2): 

or converting the I sum into an integral, which should be understood as a principal 
value, we obtain: 

p =p0+(n/2)  { ( d l / s ~ ~ ) V , ( l - 2 ( & .  f ) ’ ) ( S ( I ) -  1). (45) 

Taking into account the rotational invariance of S ( l ) ,  the angular factor can be taken 
out from the integral in equation (45) leaving us finally with the result: 

p = p O + ( n / 6 )  1 (dll8.rr3)V,(S(l)- 1) (46) 

which when converted to position-space leads on account of equation (21) and the 
principal value restriction precisely to the expected result, equation (30). 
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6. Conclusions 

The isothermal compressibility XT of a one-component plasma (embedded in an inert 
neutralising background) can be defined from one of the equivalent relations (see 
equations (24), (25c), (27), (29)): 

= k h  lim [ k 2 e ( k ) ] - '  
k = O  

= lim ( 1 - c ( k ) - T )  k h  
k = O  k ( 4 7 4  

which all differ from the relations, equations (3, 4), valid for an ordinary (uncharged) 
fluid. We have shown that notwithstanding this difference the OCP compressibility can 
also be written as a thermodynamic derivative (see equations (38) and (39)): 

where however the thermodynamic pressure p has now to be defined from the thermal 
part ( p i )  of the mechanical stress tensor fluctuation (pk = p z  + p i )  disregarding the 
contribution (pi) of the fluctuating electric potential. In other words, the 'virial' 
equation of state corresponding to equation (48) is no longer given by equation (18,20) 
but by: 

p = (lim p z )  = p " +  ( n / 6 )  J (df/8.rr3)Vl(S(l)- I). 
k = O  

Moreover, the compressibility is now given (see equation (48)) as the ratio of two 
vanishing correlation functions. Indeed, (n-knk) vanishes by virtue of equation (24) 
while (n -kpz )  vanishes with k on the basis of the observation that the sum rule, equation 
(15), is exhausted for small k by the p i  contribution to p k  as is easily seen from equation 
(36). Finally, whereas (n-knk) is positive semidefinite, ( n - k p z )  is not, and hence the OCP 

compressibility is not a positive semidefinite quantity. The negative values obtained in 
the literature for xT from equations (48) and (49) can thus not be ascribed to some 
artefact but result directly from the particular properties of the OCP and mainly from the 
singular behaviour of c ( k )  displayed in equation (23). 
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